第一单元 《观察物体三》
1、根据一个方向观察到的形状摆小正方体,有多种摆法,无法确定立体图形的形状。
2、根据三个方向观察到的形状摆小正方体,只有1 种摆法。
3、从正面、左面、上面3个不同的方向观察同一组物体而画出的图形就是三视图。
5、由三视图拼摆正方体的方法:俯视图打地基,主视图疯狂盖,左视图拆违章。
6、先摆出符合正面的立体图形,再摆出符合上面的立体图形,最后确定立体图形。根据从正面、左面、上面观察到的平面图形还原立体图形只有唯一的一种情况。
7、不同角度观察一个物体 , 看到的面都是两个或三个相邻的面。
8、至少用8个正方体可拼成较大的正方体,27个64个125个……都可拼成较大正方体。
第二单元 因数和倍数
一、因数和倍数。
在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数.
如整数a能被b整除(a÷b=c),那么a就是b和c的倍数,b和c就是a的因数。因数和倍数是相互依存的,不能单独存在。
因数:一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。
如:9的最小的因数是1,最大的因数是9。
又如:A的最小的因数是1,最大的因数是A。
一个数的因数的求法:成对地按顺序找,或用除法找。
如:15的因数:1、3、5、15
方法:15÷1=15,15÷3=5 (除法)
或 15=1×15 15=3×5 (乘法)
完全数:除了它本身以外所有的因数的和等于它本身的数叫做完全数。如:6的因数有:1、2、3(6除外),刚好1+2+3=6,所以6是完全数,小的完全数有6、28等
倍数:一个数的倍数的个数是无限的,最小的倍数是它本身。
一个数的倍数的求法:依次乘自然数。
例如:6的倍数:6,12,18,24,30……
方法:6×1=6,6×2=12,6×3=18,
6×4=24,6×5=30,6×6=36……
二、自然数按能不能被2整除分为:奇数 偶数
奇数:不是2的倍数的数叫做奇数。
如1、3、5、7、9、11……
偶数:是2的倍数的数叫做偶数。
如:2、4、6、8、10、12……
最小的奇数是1,最小的偶数是0。
2、3、5倍数的特征:
个位上是0,2,4,6,8的数都是2的倍数。
个位上是0或5的数,是5的倍数。
一个数各位上的数的和是3的倍数,这个数就是3的倍数。
如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。
同时是2、3、5的倍数,个位上是0并且各位上的数的和是3的倍数,这个数就同时是2、3、5的倍数。最大的两位数是90,最小的两位数是30,最小的三位数是120。
同时满足2、3、5的倍数,实际是求2×3×5=30的倍数。
6的倍数既是2 的倍数,又是3的倍数。
(个位上是0,2,4,6,8且各位上的数的和是3的倍数)
同时是3、5的倍数的特征:个位上是0或5,且各位上的数的和是3的倍数。
三、自然数按因数的个数来分:质数、合数、1、0.
质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。
如2,3,5,7,11,13,17,19……都是质数。
合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。如4,6,8,9,10,12,14,15,16,18,20,22,26,49……都是合数。合数至少有三个因数,1、它本身、别的因数
1: 只有1个因数。“1”既不是质数,也不是合数。
最小的质数是2,最小的合数是4。
20以内的质数:有8个(2、3、5、7、11、13、17、19)
(1)所有的奇数都是质数。不对,因为9是奇数,但不是质数,而是合数。
(2)所有的偶数都是合数。不对,因为2是偶数,但不是合数,是质数。
(3)在1,2,3,4,5,…中,除了质数以外都是合数。不对,因为1既不是质数也不是合数。(4)两个质数的和是偶数。不对,因为2是质数也是偶数,而其他的质数都是奇数,偶数+奇数=奇数。
四、100以内的质数(共 25 个):2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97
五,奇数+奇数=偶数(如:5+7=12 3+5=8)
奇数+偶数=奇数(如:1+4=5 7+2=9)
偶数+偶数=偶数(如:2+4=6 8+6=14)
奇数×奇数=奇数(如:5×7=35 7×9=63)
奇数×偶数=偶数(如:5×8=40 7×8=56)
偶数×偶数=偶数(如:8×12=96 14×24=336)
质数×质数=合数
分解质因数:把一个合数分解成多个质数相乘的形式。
用短除法分解质因数 (一个合数写成几个质数相乘的形式)。
比如:30分解质因数是:(30=2×3×5)
六、公因数、最大公因数
几个数公有的因数叫这些数的公因数。其中最大的那个因数就叫它们的最大公因数。用短除法分解质因数 (一个合数写成几个质数相乘的形式)例:12=2×2×3
用短除法求两个数或三个数的最大公因数 (除到互质为止,把所有的除数连乘起来).
几个数的公因数只有1,就说这几个数互质。两数互质的特殊情况:
⑴1和任何自然数互质;
⑵相邻两个自然数互质;
⑶两个质数一定互质;
⑷2和所有奇数互质;
⑸质数与比它小的合数互质;
如果两数是倍数关系时,那么较小的数就是它们的最大公因数。
如果两数互质时,那么1就是它们的最大公因数。
两个数的公因数是它们最大公因数的因数。
七、公倍数、最小公倍数:几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。
用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)
用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)
如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。
如果两数互质时,那么它们的积就是它们的最小公倍数。
两个数的公倍数是它们最小公因倍数的倍数。
互质数:公因数只有1的两个数,叫做互质数。
两个质数的互质数:5和7
两个合数的互质数:8和9
一质一合的互质数:7和8
求最大公因数和最小公倍数方法
用12和16来举例
1、 求法一:(列举求同法)
最大公因数的求法:
12的因数有:1、12、2、6、3、4
16的因数有:1、16、2、8、4
最大公因数是4
最小公倍数的求法:
12的倍数有:12、24、36、48、…
16的倍数有:16、32、48、…
最小公倍数是48
2、求法二:(分解质因数法)
12=2×2×3
16=2×2×2×2
最大公因数是:2×2=4 (相同乘)
最小公倍数是:2×2×3×2×2= 48 (相同乘× 不同乘)
3、求法三:短除法
用短除法求下列各组数的最大公因数。①12和18 ②34和102 ③ 12、24和36
想:用短除法求两个数的最大公因数,一般用这两个数除以它们的公因数,一直除到所得的两个商只有公因数1为止,再把所有的除数连乘起来,所得积就是这两个数的最大公因数。最小公倍数就是所有公因数连乘再乘最后的商。
34和102的最大公因数是 2×17=34,
最小公倍数是 2×17×1×3=102
最大公因数和最小公倍数的知识应用:
1:一张长方形纸长24厘米,宽16厘米,如果要剪成若干同样大小的正方形而没有剩余,剪出的正方形的边长最大是多少厘米?可以剪几个正方形?
解题思路:正方形的边长一定是长和宽的公因数,且是最大公因数。
答:剪出的正方形的边长最大是8厘米。可以剪6个正方。
最大公因数的应用的关键词:“最大”、“最长”、“最多”等。
知识应用2:甲、乙两人去图书馆看书,甲每6天去一次,乙每8天去一次。如果4月1日他们两个在图书馆相遇,那么下一次在图书馆相遇是几月几日?
解题思路:他们两个下次在图书馆相遇所经过的天数一定是6和8的公倍数,且是最小公倍数。
答:他们下一次在图书馆相遇是4月25日。
知识应用3:一群学生去春游,去时12个人坐一辆车刚好,回来时8个人坐一辆车刚好。这群学生最少有多少人?
解题思路:12刚好8也刚好,那么总人数一定是8和12的公倍数,最少多少人就是求最小公倍数。
12=2×2×3 8=2×2×2 最小公倍数 2×2×3×2=24
答:这群学生最少有24人。
最小公倍数的应用的关键词:“最少”、“最小”、“至少”等。
第三单元 长方体和正方体
1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。长方体和正方体都是立体图形。正方体也叫立方体。
2、相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。(长、宽、高都各有4条,分别平行并且相等)
3、长方体的特征:
① 面:有6个面,都是长方形(特殊情况下最多有两个相对的面是正方形)。相对的面完全相同。
② 棱:有12条棱。相对的棱长度相等。
③ 顶点:有8个顶点。
4、正方体的特征:
① 面:有6个面都是正方形,6个面完全相同。
② 棱:有12条棱。12条棱的长度相等。
③ 顶点:有8个顶点。
相同点 | 不同点 | ||
面 | 棱 | ||
长方体 | 6个面, 12条棱, 8个顶点。 | 6个面都是长方形。(有可能有两个相对的面是正方形)。 | 相对的棱的长度都相等 |
正方体 | 6个面都是正方形。 | 12条棱都相等。 |
5、正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
至少要8个小正方体才能拼成一个稍大的正方体。
经过折叠可以组合成长方体:
长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4
L=(a+b+h)×4 (长+宽+高)=棱长总和÷4
长=棱长总和÷4-宽 -高 a=L÷4-b-h
宽=棱长总和÷4-长 -高 b=L÷4-a-h
高=棱长总和÷4-长 -宽 h=L÷4-a-b
经过折叠可以组合成正方体:
正方体的棱长总和=棱长×12 L=a×12
正方体的棱长=棱长总和÷12 a=L÷12
6、长方体或正方体6个面和总面积叫做它的表面积。
长方体的表面积=(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
无底(或无盖)长方体表面积= 长×宽+(长×高+宽×高)×2
S=2(ab+ah+bh)-ab 或 S=ab+2ah+2bh
S=2(ah+bh)+ab
无底又无盖长方体表面积=(长×高+宽×高)×2 S=2(ah+bh)
正方体的表面积=棱长×棱长×6
生活实际:占地面积是指底面积 S=a×b
油箱、罐头盒等都是6个面 S=2(ab+ah+bh)
游泳池、鱼缸、教室涂刷等都只有5个面。(S=ab+2ah+2bh)
水管、烟囱等都只有4个面。S=a×a×4 =4a²
注意1:用刀分开物体时,每分一次增加两个面。(表面积相应增加)
注意2:长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。(如长、宽、高各扩大2倍,表面积就会扩大到原来的4倍)
7、物体所占空间的大小叫做物体的体积。
长方体的体积=长×宽×高 V=abh
长=体积÷宽÷高 a=V÷b÷h
宽=体积÷长÷高 b=V÷a÷h
高=体积÷长÷宽 h= V÷a÷b 或 h= V÷S
正方体的体积=棱长×棱长×棱长
V=a×a×a = a³ 读作“a的立方”表示3个a相乘,(即a·a·a)
长方体或正方体底面的面积叫做底面积。
长方体(或正方体)的体积=底面积×高 用字母表示:V=S h
(横截面积相当于底面积,长相当于高)。
注意:一个长方体和一个正方体的棱长总和相等,但体积不一定相等。
长方体或正方体底面的面积叫做底面积。
长方体(或正方体)的体积=底面积×高 用字母表示:V=S h
(横截面积相当于底面积,长相当于高)。
注意:一个长方体和一个正方体的棱长总和相等,但体积不一定相等。
8、箱子、油桶、仓库等容器所能容纳物体的体积,通常叫做他们的容积。
长方体和正方体容器容积的计算方法,跟体积的计算方法相同,但要从里面量长、宽、高。(所以物体的体积大于它的容积)。
常用的容积单位有升和毫升也可以写成L和ml。
1升=1立方分米 1毫升=1立方厘米
1升=1000毫升
(1 L = 1 dm³ 1 ml = 1 cm³)
9、注意:长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。